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Abstract. In this paper, we describe audio “texture” features based on the Short Time
Fourier Transform (STFT). We use these features in combination with three popular learn-
ing machine algorithms to classify spoken voice segments of a popular Electronic Dance
Music radio show “A State of Trance”, which is produced by the current world number 1
DJ; Armin van Buuren.
The aim was accurately to distinguish when Armin van Buuren was talking regardless of
background silence, music or other voices (sung or spoken).
We achieved strong empirical results which could be further improved with some basic
domain-specific heuristics or compromises on the feature parameters. SVM and Bayesian
Logistical Regression produced particularly encouraging results both yielding ≈ 98% over-
all classification accuracy and ≈ 99% F-score on the speech class on the highest model
where we increased the verbosity of the underlying feature set. SVM however provided the
most robust performance given several feature variations, significantly out-performing the
others given less verbosity on the feature set.

1 Introduction

There is a wealth of time series style data such as audio that does not possess effective “temporal”
metadata relevant to the purposes of information retrieval and processing. Audio is different from
video because it can not be quickly scrubbed and indexed by a human in the same way a video
can. One can scrub through most videos on YouTube and quickly ascertain the gist. Often, audio
data must be assimilated much more slowly because the only way to interpret the content and
structure is to listen in real time. The metadata itself could be the name of the current track,
the genre, or simply whether the DJ was talking.

Automatic methods to add temporal metadata to audio data would be ideal and could open
up the possibility of real time applications such as blocking commercials or spoken voice on a
radio.

The problem of distinguishing music from speech can be approached by introducing some
explicit criteria; for example, speech having distinct spectral characteristics over time. The issue
though is that no single type of structural analysis would be sufficient to distinguish speech.
Rather it is better to use a learning machine which will identify high level patterns amongst
features in the audio. In this paper, we have applied this approach which is typical of machine
learning. We create a training set by labelling some part of a music file and then train a learning
algorithm to distinguish music from speech.

The design of descriptive features (structure extraction) is one of the main challenges when
building pattern recognition systems. Features that describe intervals of non-stationary data are
even more challenging. This paper builds on methods recently used by Tzanetakis et al [10][11]
and Foote et al [4].



The learning algorithms which we use for this binary classification task are; Support Vector
Machines (SVM), Bayesian Logistical Regression (BLR) and C4.5.

We were particularly interested in finding applications of supervised machine learning tech-
niques (especially SVM) to audio segmentation and classification. Most papers were concerned
with unsupervised scenarios, genre classification or fingerprinting.

Lie et al [6] did very similar work to us implementing an RBF SVM predicting 4 segment
classes (3 of which were speech based). They also achieved encouraging results, 96.65% average
accuracy on speech/non-speech (we got 98.3%). They cited classification performance and the
complicated distribution of audio data in feature space as their motivations for using SVM.

R.Shantha [3] used an SVM with a combination of wavelet features and Fourier features to
predict 16 audio classes from a database of 534 sounds. At the highest level of detail on their
features, they achieved 91.6% classification accuracy.

Jia Ching-Wang [5] used an SVM in combination with spectral features to predict 15 audio
classes from 677 sound files achieving an accuracy of 91.7% in the best case. He discusses a novel
framed based approach to combine the constituent features from one file into one big feature,
rather than taking the means and standard deviations. We do the latter in this paper although
the difference is that our features only represent one second of time which is perfectly acceptable
(we are doing segmentation).

We were not able to find examples of BLR or decision tree algorithms used for audio classi-
fication. However we have shown these algorithms to be quite weak compared to SVM.

2 Digital Signal Processing

Audio data starts out in the time domain and meaningful analysis cannot be performed easily
in the time domain (with a notable exception in our case - the Zero Crossings feature). While
a single sinusoidal function such as sin(x) is instantly recognisable; any kind of composite such
as sin(x) + sin(2x) would not look like a sine wave any more and some decomposition into the
frequency domain would clearly be required before analysis. Fourier Analysis represents any
function as a set of multiple integer oscillations of trigonometric functions. To use an analogy,
think of a prism decomposing a magenta-coloured light into its constituent colours (red and blue).
Ultimately we need rich short-time feature vectors to pass into the Support Vector Machine.

In this paper we are only interested in the discrete Fourier transform because the audio data
has been discretely sampled (usually at 44, 100Hz).

2.1 Discrete Fourier Transform

The sequence of N complex numbers x0, . . . , xN−1 is transformed into the sequence of N complex
numbers X0, . . . , XN−1 by the DFT according to

Xk =

N−1∑
n=0

xne
− 2πi

N kn, k ∈ {0, . . . , N − 1} (1)

where i is the imaginary unit and e
2πi
N is a primitive Nth root of unity i.e. complex numbers on

the edge of the unit circle that move around counter-clockwise when raised to the Nth power.
Note that x is our audio signal which will be real-valued for our purposes.

The DFT result vector Xk can be converted back into the time domain with the Inverse
Discrete Fourier Transform (IDFT) given as



xn =
1

N

N−1∑
k=0

Xke
2πi
N kn, n ∈ {0, . . . , N − 1} (2)

.

2.2 Short Time Discrete Fourier Transform

On large audio samples such as radio shows; it is not sufficient just to use the DFT. For our
purposes we are interested in short-time features in the audio data. We effectively break up the
signal up into sliding, overlapping frames by multiplying xi by window function w(t, s, p) where
t is the start index of the window, s is the requested position in the window and p is the window
length. STFT windows are only non-zero for a short period of time (for an interval of [1, p]). The
reason STFT frames are overlapped (see Fig. 1) is to reduce boundary artifacts. The window
function itself is often hill shaped but centred around t+ p

2 such as the Hann window given as

w(t, s, p) =

{
1−cos( 2πs−t

p )
2 t ∈ (s, s+ p)

0 elsewhere

}
(3)

. The main reason for this is to reduce spectral leakage.
When spectral leakage is less of a concern, the rectangular window is often used, given as

w(t, s, p) =

{
1 t ∈ (s, s+ p)
0 elsewhere

}
(4)

.
The DFT is then calculated for these windowed frames as before. The end result (known as

the STFT) is given by

Sk =

N−1∑
n=0

w(t, s, p)xne
− 2πi

N kn, k ∈ {0, . . . , N − 1} (5)

. In this paper we have applied the Hann window function to the STFT.

Fig. 1. Illustration of the overlapping frames in STFT (from [13])

2.3 Feature Extraction

From a pattern recognition perspective; the goal is to get a relatively small set of highly descrip-
tive features. Clearly the learning machine (in this case SVM) would perform better in terms of
performance and classification accuracy.



Discretely Binning the STFT Vectors Assuming our STFT windows are of length 512, the re-
sulting frequency vectors will also be of length 512. This amount of information is extraneous
and qualitatively too high to feed directly into an SVM considering these radio shows are often
hours long. The first thing we did to the output of the STFT was to reduce the dimensionality
to a much lower number (64, 32, or 8) depending on the model. We did this by dividing the
resulting STFT vectors into x bins and taking the average value of each bin. In the following
section we will be talking about a further discretisation into bands but this will be across these
STFT bins, not the original STFT result vectors.

Downsampling In our results section we will consider 3 working empirical models. On 2 of the
models (B & C) we downsample the audio information to 22050Hz before it even goes into
the DFT. Note that this has the effect of reducing the highest representable frequency to 22050

2
(Nyquist Theorem [9]). This also means that for those two models, each texture window will only
comprise of about 44 analysis windows.

In addition to using the raw STFT output, we would also like to design some transformations
that will succinctly distinguish the classes we are trying to identify speech vs. non-speech.

2.4 Frequency Domain Features

This section will describe the features that operate in the frequency domain. See Fig. 2 for a
comparison of speech and music in the frequency domain. Most of them operate by first splitting
the binned STFT frames up into log-spaced bands. If the bands parameter is set to 4, these
features will have 4 outputs (e.g. Fig. 4) each effectively representing a log-spaced segment of the
STFT frame which has already been binned (see Section 2.3). The rationale here is that there
is more “interesting” stuff going on in the lower frequencies so we need to examine those closely
while on the upper frequencies the information is less verbose and can be described with wider
bands.

Let Fi = fi(u), u ∈ {0, . . . ,M} be the STFT of the ith frame. M is the index of the highest
frequency bin (see Section 2.3). Let Fib = fi(ub), u ∈ (lb, ub) where lb and ub are edges of the
band b. For clarity, fi(u) describes a band b on the ith STFT frame. The spectral features that
follow are extracted for each binned STFT frame.

The Spectral Centroid given as

SCib =

∑ub
u=lb

u · |fi(u)|2∑ub
u=lb
|fi(u)|2

(6)

is perhaps the most common spectral feature referred to in research papers and often cited as
being highly effective when combined with a textural feature ([10]).

The Spectral Centroid characterises the audio spectrum’s shape (see Fig. 4) and brightness -
indicating its “centre of mass” i.e. central tendency. It is calculated using the weighted mean of
the frequencies present in the spectrum.

The Spectral Bandwidth feature given as

SBib =

∑ub
u=lb (u− SCib)2 · |fi(u)|2∑ub

u=lb |fi(u)|2
(7)

is the weighted average of the distances between spectral components.
The Spectral Band Energy feature given as

SBEib =

∑ub
u=lb
|fi(u)|2∑M

u=0 |fi(u)|2
(8)



Fig. 2. An illustration of two spectrograms showing 3 second sample intervals from A State of
Trance. The top one is speech on top of music, the bottom is just music. It is worth clarifying
at this point that the DJ never talks without some kind of music in the background. The thing
that really characterises speech is the harmonic “stripes” in the spectrogram which are frequency
“peaks” changing with time. Most musical instruments produce a harmonic series of frequency
peaks where all peaks are constant multiples of the first peak (which is known as the fundamental
frequency). The human voice is also a musical instrument. The reason that musical instruments
all produce a harmonic series is simply because it is more pleasing to listen to than a single tone
because it stimulates several critical bands of hearing in our ears. The reason for the existence
of harmonics is quite intuitive too, for example when a guitar string vibrates it recursively sub-
divides on itself causing resonance at constant multiples of its fundamental frequency. Different
instruments are characterised by the shape of their harmonic series. The music segment at the
bottom is showing a particularly percussive piece though (think drums and “boum-boum”). Per-
cussive instruments are not harmonic but rather have full spectral coverage, they are not constant
in time which explained the gaps. These particular percussive beats do have some visible har-
monic content incorporated though because electronic dance music is created with synthesisers
and thus doesn’t accurately represent traditional instruments.



Fig. 3. Plot of the spectral energy feature
(with one band shown) on a 3 second seg-
ment of show 378.

Fig. 4. Illustration of the spectral centroid
feature with 4 bands on a short music seg-
ment.

describes energy in the frequency bands normalised by the energy in the entire spectrum (see
Fig. 3).

The Root Mean Square feature given as

RMSib =

√∑ub
u=lb

fi(u)2

ub − lb
(9)

is a measure of the loudness of a frame ([10]).
The Spectral Flatness Measure given as

SFMib =

[∏ub
u=lb

] 1
ub−lb+1

1
ub−lb+1

∑ub
u=ub

|fi(u)|2
(10)

quantifies the flatness of the spectrum and distinguishes between noise and tone-like signals.
The Spectral Crest Factor feature given as

SCFib =
max

(
|fi(u)|2

)
1

ub−lb+1

∑ub
u=ub

|fi(u)|2
(11)

measures the tonality of a signal.
The Shannon Entropy feature given as

SEib =

ub∑
u=lb

|fi(u)| log2 |fi(u)| (12)

measures the spectral distribution of a signal.
The Renyi Entropy feature

REib =
1

1− r
log

(
ub∑
u=lb

|fi(u)|r
)

(13)

is also a measure of spectral distribution but can be of a higher degree. In all experiments on
this paper we have used degree 2.

The Spectral Rolloff feature

ROib =

ub∑
u=lb

fi(u) ≤ 0.85

(
ub∑
u=lb

fi(u)

)
(14)



is characterised as the frequency below which 85% of the magnitude distribution is concentrated
(Tzanetakis et al [11]). The rolloff is another measure of spectral shape.

Spectral Flux is the sum of the square difference between successive binned STFT frames
(taken from [8])

2.5 Time Domain Features

Zero Crossings Rate The Zero Crossings Rate is a measurement of how many times the zero
boundary is crossed within an interval (also 512 samples).

2.6 Textural extraction

Ultimately we want feature vectors that represent 1 second of audio. This is for simplicity pri-
marily but also qualitatively to ensure that there is enough information to discern whether or
not the DJ is talking.

We could simply set a STFT window size of 44100, but we want to have an even richer
temporal picture of what is happening within that one second. To achieve this; we set the STFT
window size to be 512 samples which is roughly 1

88 th of a second (small enough to assume
stationarity of the signal) and we combine them back together into 1 second feature vectors
by taking the arithmetic means and variances. This is really important to do because speech
contains vowel and consonant sections which have very different spectral characteristics ([11]).

The width of the windowing function w(t, s, p) determines whether there is a good frequency
resolution, or good time resolution (see Fig. 2.6). Clearly, the shorter the window, the better
the time resolution and thus the time of changes in frequencies can be accurately represented. A
wider window though will result in much more accurate representation of what the frequencies
actually are. This can be explained using the Nyquist theorem. Assuming we take a window of N
samples at a sampling rate of S. The underlying DFT will produce N complex coefficients. Half of
these get discarded on a real valued signal and the remaining N

2 coefficients represent the discrete

frequencies {
S
2
N
2

· {0, . . . , N2 }}. Clearly, as N increases, so does the frequency resolution. There are

other methods of signal analysis such as Wavelets that do not have the time/frequency tradeoff
because they operate in a different domain (time/scale domain). For our purposes though we felt
that the STFT was perfectly acceptable because for example at a sampling rate of 44100Hz, a
2048 sample window might give us 44100

2048 ' 22.5 discrete frames per second and 1024 frequency
blocks representing increments of 22050

1024 ' 21.5Hz. This is actually overkill which is why we bin
the STFT vectors to further reduce their dimensionality.

Fig. 5. Illustration of the time/frequency resolution trade off.

We call these textural features inspired from Tzanetakis et al 2002 [11]. Tzanetakis found that
musical genre classification accuracy rapidly increases with the number of analysis frames within



texture windows. From 40% at 1 frame to 55% at 20 frames. It finds a limit very quickly after
about 500ms of represented underlying audio. This is intuitive considering the limit is reached
at the point when the genre could be reasonably ascertained.

Other alternative methods have been used to incorporate the temporal information into the
stationary STFT outputs such as time derivatives [14].

3 Learning Machines Overview

3.1 Support Vector Machines

Support Vector Machines are a set of supervised learning methods used for binary classification
(pattern recognition). SVM works by placing the training data in a multidimensional real value
space and aims to find an optimal linear separating hyperplane that maximises the margin
between the nearest examples of the two opposite classes while simultaneously minimising the
extent of error (examples falling on the wrong side of the hyperplane). The induced hyperplane
becomes a binary decision rule for classifying new examples. One of the reasons SVM performs
so well is that its objective function has a “regularising” term with the combined objectives of
simplifying the decision rule as well as minimising error on the training set. This allows SVM to
deal well with “overfitting” which is where the training set is learned too tightly thus jeopardising
general performance.

Primary form of SVM We have a training set of examples with their respective labels of the
form (x, y) and we want to separate them with a hyperplane of the form xi ·w+b. In the primary
form the SVM can be described as the following optimisation problem

1

2
(w · w) + C

(
l∑
i=1

ξi

)
→ min

s.t. yi((xi · w) + b) ≥ 1− ξi
i = 1, . . . , l

(15)

.
The primary form gives us the optimal separating hyperplane wi. ξi is the cumulative error,

C is the “complexity” coefficient, which weights the amount of error that will be tolerated (and
thus how simple the resulting decision rule is).

Classifying non-linear data Perhaps the most powerful feature of SVM is the implementation
of the “Kernel Trick”. SVM is a linear classifier and in its original form can only perform well
on linearly separable data. If you had a set of 2-dimensional data which looked like a cluster of
negative examples surrounded by a circle of positive examples, the SVM would fail to produce
good results. However the “trick” is that we first transform the data using a higher degree
function and then find a linear separating hyperplane in the transformed space. Clearly; the
resulting decision rule would need to incorporate the same transformation within it so that new
examples are first transformed into the same space before the classification is made.

The kernel trick transforms any algorithm that solely depends on the dot product between
two vectors (which is replaced with the kernel function). The SVM can be described in dual
formulation to allow us to use kernels. Using kernels, a linear algorithm can be transformed into
a non-linear algorithm. This non-linear algorithm is equivalent to the linear algorithm operating



in the range space of φ. However, because kernels are used, the φ function is never explicitly
computed (where φ(x) is an inner product space, such that K(x, y) = ϕ(x) · ϕ(y)). This is
desirable, because the high-dimensional space may be infinite-dimensional (as is the case when
the kernel is a Gaussian).

The kernel trick was first published by Aizerman et al [7].
The dual form is found from representing the SVM problem as a Lagrangian. When the

Lagrangian is rearranged to be only in terms of the Lagrangian multipliers αi, the training
examples are also in an inner product. The inner product is then replaced with a kernel function∑l

i=1 αi −
1
2

∑l
i,j=1 yiyjαiαjK (xi, xj)→ max

such that 0 ≤ αi ≤ C, i = 1, 2, . . . , l and
∑l
i=1 yiαi = 0.

The classification of a new x is given by sgn
(∑l

i=1 αiyiK(xi, x) + w0

)
.

Radial Basis Function Kernel We will be using one of the most popular kernel functions –
the Gaussian Radial Basis Function Kernel

k(x, x′) = e(−γ‖x−x
′‖2)

where k(x, x′) describes a cell in the Kernel matrix and γ is the width of the Gaussian function.
We tried several kernels and got the best results from this one.

3.2 Bayesian Logistical Regression

Suppose we are given a data sample D = {(x1, y1), (x2, y2), . . . , (xT , yT )}, where xi ∈ Rd are
signals and yi ∈ {−1, 1} are labels. Consider the set of probabilistic models parametrised by
β ∈ Rd, where Pr(y = 1 | x, β) = ψ(β′x) and ψ(r) = er/(1 + er), or, in other terms, Pr(y = s |
x, β) = (1 + e−sβ

′x)−1, s = ±1, and labels are assumed to be independent given their signals.
The Bayesian approach is used to fit a model, i.e., to find β. One needs to minimise the neg-

ative logarithm of the posterior density of β given D, which is equal to
∑T
i=1 ln(1 + e−yiβ

′xi)−
ln p(β), where p(β) is the prior density. For the prior density we take either the Gaussian (in this
paper we always used the Gaussian prior) or the Laplace distribution centred at 0 with indepen-

dent components, so that − ln p(β) equals, up to a constant, to
∑d
j=1 βj/σ

2
j or

∑d
j=1 λj |βj |. See

Genkin et al[2] for more detail.
Once a β is found, we can work out classifications for new unseen signals by setting a threshold.

3.3 C4.5

C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan [12]. C4.5 is an
extension of Quinlan’s earlier ID3 algorithm.

At each node of the tree, C4.5 chooses one attribute of the data that most effectively splits
its set of samples into subsets enriched in one class or the other. Its criterion is the normalized
information gain (difference in entropy) that results from choosing an attribute for splitting the
data. The attribute with the highest normalized information gain is chosen to make the decision.
The C4.5 algorithm then recurs on the smaller sublists.

The algorithm is based on Occam’s razor i.e. it prefers smaller decision trees (simple rules) over
larger ones. However, it does not always produce the smallest tree, and is therefore a heuristic.
Occam’s razor is formalised using the concept of information entropy

E(S) = −
n∑
j=1

fS(j) log2 fS(j)



where E(S) is the information entropy of the subset S; n is the number of different values of the
attribute in S (entropy is computed for one chosen attribute), fS(j) is the frequency (proportion)
of the value j in the subset S.

Gain given as

G(S,A) = E(S)−
m∑
i=1

fS(Ai)E(SAi)

quantifies the entropy improvement by splitting over an attribute, and higher is better where
G(S,A) is the gain of the subset S after a split over the A attribute, E(S) is the information
entropy of the subset S, m is the number of different values of the attribute A in S, fS(Ai) is
the frequency (proportion) of the items possessing Ai as value for A in S, Ai is ith possible value
of A, SAi is a subset of S containing all items where the value of A is Ai.

C4.5 incorporates one relevant improvement for our purposes and that is pruning trees after
creation. C4.5 goes back through the tree once it has been created and attempts to remove
branches that do not help by replacing them with leaf nodes.

4 Experimentation Methodology and Final Feature Vectors

Episodes of a State of Trance are normally 2 hours long. For experimentation we decided to
extract nearly 5 minute (299 seconds) intervals from 9 different shows. Usually these intervals
were from the beginning of the show because the DJ is almost guaranteed to talk although
sometimes they were taken from a random index in the show where the DJ talked. We used one
of these 5 minute intervals as training data, and the rest were concatenated together to form a
large single test set.

As with any binary classification task, true/false labels were assigned to all of the data –
intervals featuring DJ Armin van Buuren talking were labelled true, other regions were labelled
false (even if they contained speech or singing from other people). The purpose was to specifically
distinguish when Armin van Buuren was talking.

All of the labelled data and corresponding MP3 files are available to download from the
address given at the end of the paper (in CSV and Weka format). Show 374 was used for the
training set, and shows; 368, 369, 370, 371, 372, 373, 375 and 378 (in that order, concatenated
into one) were used for the test set.

The training set had 28 instances/seconds of speech (271 non-speech). The test set had 2392
instances, comprising; 291 speech, 2101 non-speech.

Feature extraction summary STFT was performed on overlapping sliding frames of discre-
tised sampled audio (as previously discussed in this paper). The source audio was stereo but we
simply took the left channel and discarded the right. The STFT frames were binned to reduce
the dimensionality and various frequency domain features were then run with these bins as an
input. One feature (zero crossings) was run in the time domain i.e. no STFT is applied.

Textural features corresponding to one second of source audio were created by taking means
and variances of the underlying raw STFT bins and output of feature vectors. The interval of
the means and variances would of course alter depending on the STFT capture window i.e. a
capture window of 512 samples would mean that samplerate

512 features would be combined into one.
The cardinality of the feature vector doubles at this stage because for every “textural” feature
there is a mean and variance for an interval of underlying “normal” features.

See Table 2 for an illustration of how the features are set out for use with the learning
machines. Clearly the size of the feature matrix will change depending on the parameters used
on the feature extractors i.e. number of bands and the number of bins on the STFT.



Data preprocessing For the SVM and BLR algorithms the data was first linearly scaled onto
the interval [0,1]. These algorithms have been shown to perform better when the data is scaled
to this interval.

Selecting optimal parameters for the learning machines Selecting optimal parameters
for learning machines can be a bit of a black art. The approach we used was essentially trial
and error using the Weka data mining software ([1]). We were interested in optimising for the
F-measure on the speech class first, while bearing the overall classification accuracy in mind.
These objectives were never conflicting.

Please see Table 1 for an illustration of which parameters we used on the learning machines,
for each model.

Model A Model B Model C

SVM Complexity (C) 5 5 5
SVM RBF Bandwidth (γ) 0.07 0.08 0.09
C4.5 Tolerance 0.25 0.25 0.25
BLR Tolerance 0.8 0.8 0.5

Table 1. Table showing which learning machine parameters were used in each model.

Mean Zero Crossings x 1
Mean STFT x Bins
Mean Spectral Flux x Bands
Mean RMS x Bands
Mean Rolloff x Bands
Mean Centroid x Bands
Mean Renyi Entropy x Bands
Mean Shannon Entropy x Bands
Mean Spectral Crest Factor x Bands
Mean Spectral Band Flatness x Bands
Mean Spectral Band Energy x Bands
Mean Spectral Bandwidth x Bands
Variance Zero Crossings x 1
Variance STFT x Bins
Variance Spectral Flux x Bands
Variance RMS x Bands
Variance Rolloff x Bands
Variance Centroid x Bands
Variance Renyi Entropy x Bands
Variance Shannon Entropy x Bands
Variance Spectral Crest Factor x Bands
Variance Spectral Band Flatness x Bands
Variance Spectral Band Energy x Bands
Variance Spectral Bandwidth x Bands

Table 2. Illustration of how the features are laid out for input into the learning machine.



See Fig. 6 for a visualisation of the feature matrix used for Model A (models are explained
in the results section).

5 Model parameters explanation

– STFT Bins is the number of bins discretised from the STFT vectors as described in Section
2.3.

– Number of Bands the number of log-spaced discretised bands rendered from the binned
STFT frames.

– Effective Sample Rate is the effective sample rate post-downsampling (originally all sam-
ples were sampled at 44100Hz).

– STFT Window Length is the length of the STFT window. Assuming the sample rate was
44100Hz, 22050Hz samples would represent a 1

2 second window.
– STFT Window Overlap Factor is how much the STFT windows overlap, expressed as a

factor. 1.3 would represent a 30% overlap.

Model A Model B Model C

STFT Bins 64 32 8
Number of Bands 6 4 4
Effective Sample Rate 44100 22050 22050
STFT Window Length 2048 1024 512
STFT Window Overlap Factor 1.1 1.5 1.3

Table 3. Table showing which feature parameters were used in each model.

6 Results

A high level perspective of the results is illustrated by Table 4. Refer to Table 5 for a verbose
set of results for all three models.

Model A Model B Model C

C4.5 82.4% 70.6% 75.3%
BLR 91.9% 70.2% 75.1%
SVM RBF 92.6% 90.0% 80.4%
Table 4. Table showing high level results on all three models. The results shown here are the
F-measure on the speech class only (since we are most concerned with the performance of speech
classification). The F-measure is a measure of accuracy taking the harmonic mean of the precision
and recall of the speech class F = 2 · precision·recall

precision+recall .

SVM with the RBF kernel consistently outperformed C4.5 and BLR. The SVM performance
between the models also seemed to emulate the change in the feature parameters i.e. a small loss
of information produced a small loss in classification accuracy. C4.5 and BLR had a pronounced
drop-off in accuracy going from model A to B. However C4.5 and BLR performed slightly better



Fig. 6. Visualization of the one of the test show intervals (5 minutes in length). A Spectrogram
is shown on the top with the speech class highlighted. Below is the corresponding “textural”
feature matrix (Model A with 220 attributes). Imagine a horizontal dividing line going halfway
across the feature matrix. The top one is the means, the bottom the variances. This is why it
looks slightly like a copy of the top half. The speech class is from about 53 to 90 seconds. One
interesting observation is the mysterious exponential-looking black curve on the spectrogram.
This corresponds to a “whisping” sound on the radio show introduction. After the log-spaced
banding on the STFT features which come first in the feature matrix, it looks more like a straight
line.
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in model C than B. The reason for this is unclear, it may be that smaller feature vectors translated
to stronger classification accuracy with these learning machines.

It was of interest to us to show that relatively strong results could still be obtained with
significantly less information (Models B & C). The differences in strength between the learning
machines are clearly illustrated here with SVM winning by some margin over the others.

Many of the classification errors were border cases (at the beginning or the end of a speech
class but most commonly the beginning) and we believe these could be avoided by using two-
second feature vectors or simply left-padding the predictions as a heuristic. It would also be
possible to increase the accuracy further by adding in some basic domain specific heuristics such
as assuming the speech was not broken within a strong segment of speech.

The data we used and the raw results can be downloaded from http://www.developer-x.

com/papers/asot/
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