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What is an option?

An option is a derivative financial instrument linked to an underlying asset,
which is usually a share, but can also be a portfolio of shares, a futures on
a share etc. There are two popular types of options, European and
American, which differ by their execution arrangements.
For our purposes we can think of an option as being an object with
parameters; Strike Price X , Put/Call (1/0), Time To Maturity T ,
Volatility σ. We are trying to predict the Volatility.
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RTSSE Datasets

The datasets we use were provided by the Russian Trading System Stock
Exchange (RTSSE) and record data from mid-2000s, when the Russian
stock market was experiencing steady unperturbed growth. The options
studied were American rather than European, which means that they could
be executed any time before maturity, not simply on maturity.
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Datasets Summary

Dataset Underlying asset Maturity Number of transactions

eeru1206 futures on share December 2006 13152
gaz307 futures on share March 2007 10985
rts307 futures on index March 2007 8410
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Volatility vs strike, transactions 1000-2000 (gaz307)
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Volatility vs strike, transactions 10000-11000 (gaz307)

1.6 1.8 2 2.2 2.4 2.6 2.8 3

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Transactions from 10000 to 11000
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Volatility vs number, transactions 1000-2000 (gaz307)
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Volatility vs number, transactions 10000-11000 (gaz307)
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Figure : Volatility vs number, transactions 10000-11000 (looks like a time series)
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Splitting into elementary time series

Suppose that we want to apply a time series prediction method. The
simplest way of doing this is to treat the outcomes ω1, ω2, . . . as a time
series ignoring the signals xt altogether. Obviously this can lead to a loss
of potentially useful information.
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Splitting into elementary time series

Interestingly, time series methods work well to predict volatility

The number of possible strikes is limited. While theoretically the
strike can have any real value, stock exchanges usually restrict strikes
to some round numbers in order to improve liquidity. Thus one can
consider splitting the time series into separate time series.

Strike filtered time series work even better.

11 / 29



Splitting into elementary time series (2)

Consider an arbitrary finite subset {U1,U2, . . . ,UK} ⊆ 2X such that
∪Kk=1Uk = X . We will call sets Uk vicinities because it is natural to choose
them in such a way that elements of Ui are in some respect akin to each
other. Each vicinity Ui generates a specialist expert that predicts as
follows. The expert is awake only on steps t where xt ∈ Ui . It maintains
the series ωt1 , ωt2 , . . . of outcomes for such steps and uses the series to
make predictions for steps t where xt ∈ Ui . For t such that xt /∈ Ui the
expert makes no predictions. The experts are then merged using the
aggregating algorithm for specialist experts.
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Splitting into elementary time series (3)

Let S consisting of s1 < s2 < . . . < sL be the strikes for a dataset. A
simple vicinity of diameter d is a set of d consecutive strikes; there are
L− d + 1 vicinities of diameter d .
A compound vicinity is a subset of S × {0, 1}, where the 0/1 bit denotes
whether the option in transaction is a put or call. A compound vicinity of
diameter d is a product of a vicinity of diameter d by either 0 or 1; there
are 2(L− d + 1) compound vicinities of diameter d . Note that some of
them may give rise to empty time series if, say, there were no transactions
on put options with particular strikes. However every transaction belongs
to at least one compound vicinity.
In the experiments below we took all simple and compound vicinities of
diameters from 1 to d with d = 5.
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Prediction with Expert Advice

for t = 1, 2, . . .
experts θ ∈ Θ announce predictions γt(θ) ∈ Γ
learner outputs γt ∈ Γ
nature announces ωt ∈ Ω
each expert θ ∈ Θ suffers loss λ(γt(θ), ωt)
learner suffers loss λ(γt , ωt)

endfor
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Prediction with Expert Advice (2)

Over T trials each expert θ suffers the cumulative loss

LossT (θ) =
T∑
t=1

λ(γt(θ), ωt)

and the learner suffers the cumulative loss

LossT =
T∑
t=1

λ(γt , ωt) ;

one wants the inequality LossT . LossT (θ) to hold for all T = 1, 2, . . .
and θ ∈ Θ.
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Aggregating Algorithm

Given a learning rate η ∈ (0,+∞) and an initial distribution over the set
of static experts θ; a distribution can be represented by an array of initial
weights p0(θ), θ ∈ Θ.
The algorithm maintains an array of weights wt(θ), θ ∈ Θ. Their initial
values are w0(θ) = p0(θ), θ ∈ Θ, and they are updated according to the
rule

wt(θ) = wt−1(θ)e−ηλ(γt(θ),ωt) = p0(θ)e−η Losst(θ) .
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Aggregating Algorithm (2)

LossT (AA) =
T∑
t=1

λ(γt , ωt) ≤ c(η)LossT (θ) +
c(η)

η
ln 1/p0(θ) .

The aggregating algorithm performs nearly as well as the best expert loss
wise (assume c(η) = 1 if η is selected optimally).
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Specialist Experts

Suppose that an expert in the prediction with expert advice framework can
abstain from making a prediction on step t; if it does so, we say that it
sleeps on step t.
If an expert θ sleeps on step t, let us assume that it suffers notional loss
λ(γt(θ), ωt) – in other words, it goes ‘with the crowd’.
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Specialist Experts (2)

Arguing as in the case of the AA, we get a similar bound; by dropping
equal terms in the losses on the left- and right-hand side we obtain

Loss
(θ)
T (AAS) ≤ c(η)Loss

(θ)
T (θ) +

c(η)

η
ln 1/p0(θ) ,

where the sum in Loss(θ) is taken only over steps when expert θ was not
sleeping (again for simplicity assume c(η) = 1).
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Distribution of Strikes (gaz307)

Distribution of strikes over gaz307 (discretisation 100)
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Distribution of Strikes (rts307)

Distribution of strikes over rts307 (discretisation 100)
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Distribution of Strikes (eeru1206)

Distribution of strikes over eeru1206 (discretisation 100)
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Predict last element on gaz307
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Predict last element on rts307
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Predict last element on eeru1206
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Improvements for different ranges of vicinities

Maximum size eeru1206 gaz307 rts307

1 20.05 2.55 1.36
2 23.18 4.69 3.57
3 24.60 4.91 4.54
4 25.21 4.91 4.95

5 25.64 4.91 5.14

6 25.84 4.84 5.19
7 25.96 4.76 5.18
8 26.04 4.68 5.15
9 26.08 4.57 5.12

10 26.09 4.49 5.11
11 26.11 4.39 5.08
12 26.10 4.34 5.06
13 26.09 4.31 5.03
14 26.08 4.28 5.01
15 26.07 4.26 5.00
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Observations

1. Simple time series methods applied strike-wise perform comparably to
the RTSSE proprietary technique (better at end).
2. The figures show that the competitor outperforms our methods at the
beginning. A plausible explanation is that the competitor incorporates
some prior knowledge about the behaviour of volatility, while our methods
need to learn from scratch.
3. Vicinities of different sizes help
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Concluding Remarks

1. On some strikes the most recent transaction happened long ago. We
may want to collate them.
2. How long ago is long ago? We have a trade-off recent in time vs close
in space.
3. We resolve it in the spirit of prediction with expert advice merging all
options and letting the weights sort out the trade-off automatically.
4. Making use of sleeping experts, a new and exciting algorithm!
5. Algorithm is fast
6. Parsimonious methods working as well as algorithms like Kernel Ridge
Regression!
7. We are looking at ARIMA and other methods to work with the
elementary time series
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Thank you.

29 / 29


	Introduction
	In This Presentation

